Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
PloS one ; 17(2), 2022.
Article in English | EuropePMC | ID: covidwho-1688135

ABSTRACT

Increasing global travel and changes in the environment may escalate the frequency of contact with a natural host carrying an infection and, therefore, increase our chances of encountering microorganisms previously unknown to humans. During an emergency, the etiology of infection may be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs may not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency was determined by the level of microbial growth inhibition and compared to conventional antimicrobial susceptibility testing results. The oligonucleotide probe pairs on the sensors were designed to target Gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A pilot study of 10 remnant clinical specimens from the Clinical Laboratory Improvement Amendments-certified labs of New York-Presbyterian Queens was conducted, and only one sample was not detected by the probes. The remaining nine samples agreed with reference AST methods (Vitek and broth microdilution), resulting in 100% categorical agreement. In a separate feasibility study, we evaluated a dual-kinetic response approach, in which we inoculated two antibiotic stripwells containing the same antimicrobial concentrations with clinical specimens at the original concentration (1x) and at a 10-fold dilution (0.1x) to cover a broader range of microbiological responses. The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.

2.
Sci Rep ; 11(1): 16069, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1356580

ABSTRACT

Point-of-care testing is cost-effective, rapid, and could assist in avoiding hospital visits during a pandemic. However, they present some significant risks that current technologies cannot fully address. Skin flora contamination and insufficient specimen volume are two major limitations preventing self-collection microbiological testing outside of hospital settings. We are developing a hybrid testing procedure to bridge the laboratory test with patient-side specimen collection and transportation for molecular microbial classification of causative bacterial infection and early identification of microbial susceptibility profiles directly from whole blood or urine specimens collected patient-side by health care workers such as phlebotomists in nursing homes or family clinics. This feasibility study presents our initial development efforts, in which we tested various transportation conditions (tubes, temperature, duration) for direct-from-specimen viable pathogen detection to determine the ideal conditions that allowed for differentiation between contaminant and causative bacteria in urine specimens and optimal growth for low-concentration blood specimens after transportation. For direct-from-urine assays, the viable pathogen at the clinical cutoff of 105 CFU/mL was detected after transportation with molecular assays while contaminants (≤ 104 CFU/mL) were not. For direct-from-blood assays, contrived blood samples as low as 0.8 CFU/mL were reported positive after transportation without the need for blood culture.


Subject(s)
Bacteria/growth & development , Bacterial Infections/microbiology , Specimen Handling/methods , Transportation/methods , Cost-Benefit Analysis , Humans , Nursing Homes , Point-of-Care Testing , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL